BINOMIAL THEOREM & MATHEMATICAL INDUCTION

BINOMIAL THEOREM

If $a, b \in R$ and $n \in N$, then

$$(a + b)^n = {}^nC_0 a^n b^0 + {}^nC_1 a^{n-1} b^1 + {}^nC_2 a^{n-2} b^2 + ... + {}^nC_n a^0 b^n$$

REMARKS :

- 1. If the index of the binomial is n then the expansion contains n + 1 terms.
- 2. In each term, the sum of indices of a and b is always n.
- 3. Coefficients of the terms in binomial expansion equidistant from both the ends are equal.
- 4. $(a-b)^n = {}^nC_0a^nb^0 {}^nC_1a^{n-1}b^1 + {}^nC_2a^{n-2}b^{2-} \dots + (-1)^n {}^nC_0a^0b^n.$

GENERAL TERM AND MIDDLE TERMS IN EXPANSION OF $(A + B)^{N}$

 $t_{r+1} = {}^{n}C_{r} a^{n-r} b^{r}$

 $t_{r^{+1}} \text{ is called a general term for all } r \in N \text{ and } 0 \leq r \leq n.$ Using this formula we can find any term of the expansion.

MIDDLE TERM (S):

1. In $(a + b)^n$ if n is even then the number of terms in the expansion is odd. Therefore there is only one

middle term and it is
$$\left(\frac{n+2}{2}\right)^{\text{th}}$$
 term.

2. In $(a + b)^n$, if n is odd then the number of terms in the expansion is even. Therefore there are two middle terms and those are

$$\left(\frac{n+1}{2}\right)^{\text{th}}$$
 and $\left(\frac{n+3}{2}\right)^{\text{th}}$ terms.

BINOMIAL THEOREM FOR ANY INDEX

If n is negative integer then n! is not defined. We state binomial theorem in another form.

$$(a+b)^n = a^n + \frac{n}{1!} a^{n-1} b + \frac{n(n-1)}{2!} a^{n-2} b^2$$

$$+\frac{n(n-1)(n-2)}{3!}a^{n-3}b^{3}+...\frac{+n(n-1)...(n-r+1)}{r!}a^{n-r}b^{r}+.....$$

Here
$$t_{r+1} = \frac{(n-1)(n-2)...(n-r+1)}{r!}a^{n-r}b$$

THEOREM:

If n is any real number, a = 1, b = x and |x| < 1 then

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + ...$$

Here there are infinite number of terms in the expansion, The general term is given by

$$t_{r+1} = \frac{n(n-1)(n-2)...(n-r+1)x}{r!}, r \ge 0$$

Note...

1 -

CLICK HERE

Х

(i) Expansion is valid only when -1 < x < 1

(ii) ${}^{n}C_{r}$ can not be used because it is defined only for natural number, so ${}^{n}C_{r}$ will be written as $\frac{n(n-1)....(n-r+1)}{r}$

IS

🕀 www.studentbro.in

(iv) General term of the series
$$(1 + x)^{-n} = T_{r+1} \rightarrow (-1)^r$$

$$\frac{1 + x}{1 + x} \text{ if } |x| < 1$$

(v) General term of the series
$$(1 - x)^{-n} \rightarrow T_{r+1}$$

= $\frac{(+1)(+2)...(+-1)}{r!}x$

(vi) If first term is not 1, then make it unity in the following way. $(a + x)^n = a^n (1 + x/a)^n \text{ if } \left| \frac{x}{a} \right| < 1$

BINOMIAL THEOREM & MATHEMATICAL INDUCTION

REMARKS:

1. If $|\mathbf{x}| < 1$ and n is any real number, then $(1-x)^n = 1-nx + \frac{n(n-1)}{2!}x^2 - \frac{n(n-1)(n-2)}{3!}x^3 + ...$

The general term is given by

$$t_{r+1} = \frac{(-1)^r n(n-1)(n-2)...(n-r+1)}{r!} x^r$$

2. If n is any real number and |b| < |a|, then

$$= (a+b)^{n} = \left[a\left(1+\frac{b}{a}\right)\right]$$

$$=a^{n}\left(1+\frac{b}{a}\right)$$

Note

While expanding $(a + b)^n$ where n is a negative integer or a fraction, reduce the binomial to the form in which the first term is unity and the second term is numerically less than unity.

Particular expansion of the binomials for negative index, |x| < 1

- 1. $\frac{1}{1+x} = (1+x)^{-1}$ $= 1 - x + x^2 - x^3 + x^4 - x^5 + \dots$
- 2. $\frac{1}{1-x} = (1+x)^{-1}$

 $= 1 + x + x^{2} + x^{3} + x^{4} + x^{5} + \dots$

 $\frac{1}{(1+x)^2} = (1+x)^{-2}$ 3. $=1-2x+3x^2-4x^3+...$

4.
$$\frac{1}{(1-x)^2} = (1-x)^{-2}$$

 $= 1 + 2x + 3x^2 + 4x^3 + \dots$

BINOMIAL COEFFICIENTS

The coefficients ${}^{n}C_{0}$, ${}^{n}C_{1}$, ${}^{n}C_{2}$,..., ${}^{n}C_{n}$ in the expansion of $(a+b)^{n}$ are called the binomial coefficients and denoted by C_0, C_1 , C₂,, C_n respectively Now $(1+x)^n = {}^nC_0x^0 + {}^nC_1x^1 + {}^nC_2x^2 + ... + {}^nC_nx^n$ (i) Put x = 1. $(1+1)^{n} = {}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + ... + {}^{n}C_{n}$ $2^{n} = {}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + \dots + {}^{n}C_{n}$ ${}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + ... + {}^{n}C_{n} = 2^{n}$ *:*.. $\therefore C_0 + C_1 + C_2 + ... + C_n = 2^n$ The sum of all binomial coefficients is 2ⁿ. *.*.. Put x = -1, in equation (i), $(1-1)^{n} = {}^{n}C_{0} - {}^{n}C_{1} + {}^{n}C_{2} - \dots + (-1)^{n}{}^{n}C_{n}$ $\therefore 0 = {}^{n}C_{0} - {}^{n}C_{1} + {}^{n}C_{2} - \dots + (-1)^{n}{}^{n}C_{n}$ \therefore ${}^{n}C_{0} - {}^{n}C_{1} + {}^{n}C_{2} - {}^{n}C_{3} + \dots + (-1){}^{n}{}^{n}C_{n} = 0$ \therefore ${}^{n}C_{0} + {}^{n}C_{2} + {}^{n}C_{4} + ... = {}^{n}C_{1} + {}^{n}C_{3} + {}^{n}C_{5} + ...$ \therefore C₀+C₂+C₄+...=C₁+C₃+C₅+... C_0, C_2, C_4, \dots are called as even coefficients $C_1, C_3, C_5...$ are called as odd coefficients Let $C_0 + C_2 + C_4 + ... = C_1 + C_3 + C_5 + ... = k$ Now $C_0 + C_1 + C_2 + C_3 + ... + C_n = 2^n$ \therefore (C₀+C₂+C₄+...)+(C₁+C₃+C₅...)=2ⁿ \therefore k+k=2ⁿ $2k = 2^{n}$ $k = \frac{2^n}{2}$ $k = 2^{n-1}$ $C_0 + C_2 + C_4 + \dots = C_1 + C_3 + C_5 + \dots = 2^{n-1}$ The sum of even coefficients = The sum of odd coefficients $=2^{n-1}$ **Properties of Binomial Coefficient** For the sake of convenience the coefficients ${}^{n}C_{0}, {}^{n}C_{1}, \dots, {}^{n}C_{r}, \dots, {}^{n}C_{n}$ are usually denoted by $C_0, C_1, \ldots, C_r, \ldots, C_n$ respectively. (i) $C_0 + C_1 + C_2 + \dots + C_n = 2^n$ (ii) $C_0 - C_1 + C_2 - \dots + (-1)^n C_n = 0$ (iii) $C_0^0 + C_2^1 + C_4^1 + \dots = C_1^n + C_3^n + C_5^n + \dots = 2^{n-1}$. (iv) ${}^{n}C_{r_1} = {}^{n}C_{r_2} \Longrightarrow r_1 = r_2 \text{ or } r_1 + r_2 = n$ (v) ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$ (vi) $r^n C_r = n^{n-1} C_{r-1}$

🕀 www.studentbro.in

Get More Learning Materials Here :

÷.

...

...

BINOMIAL THEOREM & MATHEMATICAL INDUCTION

Some Important Results

(i)
$$(1+x)^{n} = C_{0} + C_{1}x + C_{2}x^{2} + \dots + C_{n}x^{n}$$
,
Putting $x = 1$ and -1 , we get
 $C_{0} + C_{1} + C_{2} + \dots + C_{n} = 2^{n}$ and
 $C_{0} - C_{1} + C_{2} - C_{3} + \dots + C_{n}x^{n} = 0$
(ii) Differentiating $(1+x)^{n} = C_{0} + C_{1}x + C_{2}x^{2} + \dots + C_{n}x^{n}$,
on both sides we have, $n(1+x)^{n-1}$
 $= C_{1} + 2C_{2}x + 3C_{3}x^{2} + \dots + nC_{n}x^{n-1} \dots (1)$
 $x=1$
 $\Rightarrow n2^{n-1} = C_{1} + 2C_{2} + 3C_{3} + \dots + nC_{n}$
 $x=-1$
 $\Rightarrow 0 = C_{1} - 2C_{2} + \dots + (-1)^{n-1}nC_{n}$.
Differentiating (1) again and again we will have
different results.
(iii) Integrating $(1+x)^{n}$, we have,
 $\frac{(1+x)^{n+1}}{n+1} + C = C_{0}x + \frac{C_{1}x^{2}}{2} + \frac{C_{2}x^{3}}{3} + \dots + \frac{C_{n}x^{n+1}}{n+1}$
(where C is a constant)
Put $x = 0$, we get $C = -\frac{1}{(n+1)}$
Therefore
 $\frac{(1+x)^{n+1} - 1}{n+1} = C_{0}x + \frac{C_{1}x^{2}}{2} + \frac{C_{2}x^{3}}{3} + \dots + \frac{C_{n}x^{n+1}}{n+1} \dots (2)$
Put $x = 1$ in (2) we get
 $\frac{2^{n+1} - 1}{n+1} = C_{0} + \frac{C_{1}}{2} + \dots + \frac{C_{n}}{n+1}$
Put $x = -1$ in (2) we get,

$$\frac{1}{n+1} = C_0 - \frac{C_1}{2} + \frac{C_2}{3} - \dots$$

Illustration

Find the coefficient of x^4 in the expansion of $\frac{1+x}{1-x}\,if\,|\,x\,|\!<\!1$

Sol.
$$\frac{1+x}{1-x} = (1+x)(1-x)^{-1}$$

= $(1+x)[1+\frac{(-1)}{1!}(-x)\frac{(-1)(-1-1)}{2!}(-x)^2$
+ $\frac{(-1)(-1-1)(-1-2)}{3!}(-x)^3\dots$ to ∞

$$= (1 + x) (1 + x + x^{2} + x^{3} + x^{4} + \dots \text{ to } \infty)$$

= $[1 + x + x^{2} + x^{3} + x^{4} + \dots \text{ to } \infty] +$
 $[x + x^{2} + x^{3} + x^{4} + \dots \text{ to } \infty]$
= $1 + 2x + 2x^{2} + 2x^{3} + 2x^{4} + 2x^{5} + \dots \text{ to } \infty$
Hence coefficient of $x^{4} = 2$

Illustration

Find the square root of 99 correct to 4 places of deicmal.

Sol.
$$(99)^{1/2} = (100 - 1)^{1/2} \left[100 \left(1 - \frac{1}{100} \right) \right]^{\frac{1}{2}}$$

$$= \left[100 \left(1 - \frac{1}{100} \right) \right]^{\frac{1}{2}}$$

$$= (100)^{1/2} [1 - 0]^{1/2} = 10 (1 - 01)^{1/2}$$

$$10 \left[1 + \frac{1}{2} (-01) + \frac{1}{2} \left(\frac{1}{2} - 1 \right) (-01)^2 + \dots \text{ to } \infty \right]$$

$$= 10 [1 - 0.005 - 0.0000125 + \dots \text{ to } \infty]$$

$$= 10 (.9949875) = 9.94987 = 9.9499$$

Multinomial Expansion

In the expansion of $(x_1 + x_2 + \dots + x_n)^m$ where $m, n \in N$ and x_1, x_2, \dots, x_n are independent variables, we have

- (i) Total number of terms = ${}^{m+n-1}C_{n-1}$
- (ii) Coefficient of $x_1^{r_1} x_2^{r_2} x_3^{r_3} \dots x_n^{r_n}$ (where $r_1 + r_2 + r_2$)

.....+
$$r_n = m, r_i \in N \cup \{0\}$$
 is $\frac{m!}{r_1!r_2!....r_n!}$

(iii) Sum of all the coefficients is obtained by putting all the variables x_1 equal to 1.

Illustration

Find the total number of terms in the expansion of $(1 + a + b)^{10}$ and coefficient of a^2b^3 .

Sol. Total number of terms =
$${}^{10+3-1}C_{3-1} = {}^{12}C_{2} = 66$$

Coefficient of
$$a^2b^3 = \frac{10!}{2! \times 3! \times 5!} = 2520$$

Get More Learning Materials Here : 📕

CLICK HERE

